References

Bhattacharya, S. N. \& Senoff, C. V. (1979). Unpublished work.
Carty, A. J., Chieh, P. C., Taylor, N. J. \& Wong, Y. S. (1976). J. Chem. Soc. Dalton Trans. pp. 572-578.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Ferguson, G. \& Roberts, P. J. (1978). Acta Cryst. B34, 3083-3086.

Orioli, P. L. \& Nardi, N. (1975). J. Chem. Soc. Chem. Commun. pp. 229-230.
Palenik, G. J., Mathew, M., Steffen, W. L. \& Beran, G. (1975). J. Am. Chem. Soc. 97, 1059-1066.

SEnoff, C. V. (1978). Inorg. Chem. 17, 2320-2322.
Sheldrick, G. M. (1976). SHELX. A program system for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1979). B35, 2210-2212

Nonacarbonyl-di- μ-hydrido-(triphenylphosphine)-triangulo-triosmium

By Robert E. Benfield, Brian F. G. Johnson, Jack Lewis, Paul R. Raithby and Camillo Zuccaro
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
and Kim Henrick
Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England

(Received 9 April 1979; accepted 21 May 1979)

Abstract

C}_{27} \mathrm{H}_{17} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{P}, \quad \mathrm{Os}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})_{9} \mathrm{H}_{2}\), monoclinic, $P 2_{1} / n, a=8.756$ (3), $b=16.899$ (7), $c=$ 20.142 (9) $\AA, \beta=98.31$ (2) ${ }^{\circ}, U=2949.1 \AA^{3}, Z=4$, $D_{c}=2.45 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K a)=12.98 \mathrm{~mm}^{-1}$. The structure was refined to an R of 0.035 for 4078 unique diffractometer data. The three Os atoms define an isosceles triangle. The triphenylphosphine group bonds in an equatorial site on one of the Os atoms associated with the short $\mathrm{Os}-\mathrm{Os}$ bond. The carbonyl ligands are all terminal, and their distribution suggests that both hydride ligands bridge the short $\mathrm{Os}-\mathrm{Os}$ edge.

Introduction. $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ is of interest because it is a particularly reactive molecule and has been used as a starting material in many reactions leading to the formation of complex cluster species (Bryan, Johnson \& Lewis, 1977). Its reactivity is thought to be due to the unsaturation of one Os-Os bond. The nature of the bonding in this system is not well understood. Recent X-ray (Churchill, Hollander \& Hutchinson, 1977) and combined X-ray/neutron (Orpen, Rivera, Bryan, Pippard, Sheldrick \& Rouse, 1978) studies have shown that both hydrides bridge the short unsaturated Os-Os edge. An X-ray analysis of the title compound was undertaken to investigate the influence of the presence of a phosphine ligand on the $\mathrm{Os}-\mathrm{Os}$ bonding and on the cluster geometry as a whole.

The title compound was prepared by reacting triphenylphosphine with $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ in hexane, and
refluxing the product, $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, to remove a carbonyl group (Zuccaro, 1979). Recrystallization from hexane yielded dark-purple, rectangular blocks. 4240 intensities were recorded ($1.5<\theta<25.0^{\circ}$) on a Philips PW 1100 four-circle diffractometer, with graphite-monochromated Mo K a radiation, a $\theta-2 \theta$ scan, and a crystal $0.288 \times 0.272 \times 0.224 \mathrm{~mm}$. Lp corrections, and semi-empirical absorption corrections based on a pseudo-ellipsoid model and 372 azimuthal scan data from 14 independent reflections were applied; transmission factors ranged from 0.539 to 0.678 for the full data set. Equivalent reflections were averaged to give 4078 unique observed intensities $[F>4 \sigma(F)]$. Cell dimensions were derived from the angular measurements of 25 strong reflections ($10.0<\theta<15 \cdot 0^{\circ}$).

The Os atoms were located by multisolution \sum_{2} sign expansion; positions of all the other non-hydrogen atoms were found from a subsequent difference synthesis. The structure was refined by full-matrix least squares with complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) and weights $w=0.4991 /\left[\sigma^{2}(F)+0.0002\left|F_{o}\right|^{2}\right]$. The refined parameters included anisotropic thermal parameters for Os, P, and the carbonyl C and O atoms, a common isotropic temperature factor for the phenyl H atoms, and an empirical extinction parameter x, which refined to 0.00071 (2); F_{c} is multiplied by (1$0.0001 x F_{c}^{2} / \sin \theta$). The phenyl rings were refined as rigid groups with the constraints: C-C $1.395 \AA$, © 1979 International Union of Crystallography

Table 1. Atom coordinates $\left(\times 10^{4}\right)$

	x	y	z
Os(1)	614 (1)	1733 (1)	2768 (1)
$\mathrm{Os}(2)$	2689 (1)	558 (1)	2824 (1)
$\mathrm{Os}(3)$	2796 (1)	1589 (1)	3932 (1)
$\mathrm{P}(1)$	-860 (3)	1652 (1)	1691 (1)
C(11)	-1014 (13)	1915 (7)	3255 (6)
C(12)	812 (12)	2823 (7)	2698 (5)
C(21)	2271 (12)	17 (6)	1973 (6)
C(22)	4887 (15)	590 (7)	2881 (6)
C(23)	2876 (12)	-376 (7)	3373 (5)
C(31)	4001 (12)	2298 (7)	3461 (6)
C(32)	4584 (16)	1176 (8)	4504 (6)
C(33)	1346 (18)	858 (8)	4241 (6)
C(34)	2025 (14)	2426 (7)	4421 (5)
$\mathrm{O}(11)$	-1969 (10)	2033 (7)	3584 (5)
$\mathrm{O}(12)$	907 (11)	3497 (5)	2658 (5)
$\mathrm{O}(21)$	2064 (10)	-315 (5)	1479 (4)
$\mathrm{O}(22)$	6187 (10)	628 (6)	2920 (5)
O (23)	2937 (11)	-913 (5)	3710 (5)
$\mathrm{O}(31)$	4672 (10)	2729 (6)	3180 (5)
$\mathrm{O}(32)$	5626 (14)	919 (8)	4818 (6)
O(33)	459 (16)	454 (7)	4421 (5)
O (34)	1569 (12)	2936 (6)	4699 (5)
C(101)	296 (8)	1633 (4)	1003 (3)
C(102)	1594 (8)	2118 (4)	1043 (3)
C(103)	2455 (8)	2144 (4)	512 (3)
C(104)	2018 (8)	1683 (4)	-58 (3)
C(105)	720 (8)	1197 (4)	-98(3)
C(106)	-141 (8)	1172 (4)	432 (3)
C(201)	-2231 (8)	846 (3)	1507 (4)
C(202)	-3601 (8)	957 (3)	1069 (4)
C(203)	-4601 (8)	321 (3)	904 (4)
C(204)	-4230 (8)	-425 (3)	1177 (4)
C(205)	-2860 (8)	-536 (3)	1615 (4)
C(206)	-1861 (8)	100 (3)	1780 (4)
C(301)	-2047 (8)	2539 (4)	1525 (4)
C(302)	-1625 (8)	3154 (4)	1126 (4)
C(303)	-2464 (8)	3859 (4)	1073 (4)
C(304)	-3725 (8)	3949 (4)	1418 (4)
C(305)	-4147 (8)	3334 (4)	1816 (4)
C(306)	-3308 (8)	2629 (4)	1870 (4)

C-C-C $120.0^{\circ}, \mathrm{C}-\mathrm{H} 1.08 \AA, \mathrm{C}-\mathrm{C}-\mathrm{H} 120.0^{\circ}$. The hydridic H atoms were not located. The refinement converged to $R=0.035$ and $R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|$ $=0.037$. The final atomic coordinates for the nonhydrogen atoms are listed in Table 1, bond lengths and angles in Table 2.*

Discussion. The three Os atoms lie at the vertices of an isosceles triangle. The triphenylphosphine ligand bonds in an equatorial site on $\mathrm{Os}(1)$ with the P atom lying in the plane of the Os_{3} triangle. $\mathrm{Os}(1)$ is also bound to two terminal carbonyl ligands. Os (2) is bound to three carbonyls and $\mathrm{Os}(3)$ has two equatorial and two axial ligands coordinated to it (Fig. 1).

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Os}(2)-\mathrm{Os}(1) \quad 2$.	$2 \cdot 683$ (2)	$\mathrm{C}(11)-\mathrm{Os}(1) \quad 1.8$	1.869 (12)
$\mathrm{Os}(3)-\mathrm{Os}(1) \quad 2$.	$2 \cdot 813$ (2)	$\mathrm{C}(12)-\mathrm{Os}(1) \quad 1.85$	1.858 (12)
$\mathrm{Os}(3)-\mathrm{Os}(2) \quad 2$.	2.822 (2)	$\mathrm{C}(21)-\mathrm{Os}(2) \quad 1.9$	1.930 (12)
$\mathrm{P}(1)-\mathrm{Os}(1) \quad 2$.	2.361 (2)	$\mathrm{C}(22)-\mathrm{Os}(2) \quad 1.9$	1.912 (13)
$\mathrm{C}(101)-\mathrm{P}(1) \quad 1$.	1.831 (7)	$\mathrm{C}(23)-\mathrm{Os}(2) \quad 1.9$	1.921 (11)
$\mathrm{C}(201)-\mathrm{P}(1) \quad 1$.	1.818 (7)	$\mathrm{C}(31)-\mathrm{Os}(3) \quad 1.9$	1.933 (13)
$\mathrm{C}(301)-\mathrm{P}(1) \quad 1$.	1.828 (7)	$\mathrm{C}(32)-\mathrm{Os}(3) \quad 1.93$	1.935 (13)
$\mathrm{O}(11)-\mathrm{C}(11) \quad 1$.	$1 \cdot 156$ (13)	$\mathrm{C}(33)-\mathrm{Os}(3) \quad 1.938$	1.938 (14)
$\mathrm{O}(12)-\mathrm{C}(12) \quad 1$.	$1 \cdot 145$ (13)	$\mathrm{C}(34)-\mathrm{Os}(3) \quad 1.9$	1.904 (11)
$\mathrm{O}(21)-\mathrm{C}(21) \quad 1$.	$1 \cdot 133$ (13)	$\mathrm{O}(31)-\mathrm{C}(31) \quad 1.13$	$1 \cdot 137$ (13)
$\mathrm{O}(22)-\mathrm{C}(22) \quad 1$.	1.132 (14)	$\mathrm{O}(32)-\mathrm{C}(32) \quad 1.1$	$1 \cdot 120$ (15)
$\mathrm{O}(23)-\mathrm{C}(23) \quad 1$.	$1 \cdot 130$ (12)	O(33)-C(33)	$1 \cdot 132$ (14)
$\mathrm{O}(34)-\mathrm{C}(34) \quad 1$.	$1 \cdot 131$ (13)		
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(2)$	61.7 (1)	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Os}(2)$	105.8 (1)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1)$	61.4 (1)	$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Os}(3)$	167.3 (1)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$	56.9 (1)	$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{P}(1)$	97.7 (3)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(2)$	131.5 (4)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{P}(1)$	91.9 (3)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{Os}(3)$	93.1 (3)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(11)$	87.9 (5)
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(2)$	131.9 (3)	$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(21)$	$97 \cdot 3$ (5)
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(3)$	95.1 (3)	$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(21)$	96.5 (4)
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(1)$	105.8(3)	$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(22)$	89.3 (5)
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$167 \cdot 1$ (3)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(31)$	93.7 (5)
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$130 \cdot 6$ (3)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(31)$	169.2 (5)
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{Os}(3)$	90.9 (3)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(32)$	$95 \cdot 1$ (6)
$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(1)$	129.3 (3)	$\mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{C}(31)$	93.0 (5)
$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(3)$	93.5 (3)	$\mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{C}(32)$	$106 \cdot 0$ (5)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(1)$	83.7 (3)	$\mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{C}(33)$	$90 \cdot 5$ (5)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{Os}(2)$	87.3 (3)	$\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{Os}(1)$	114.1 (2)
$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(1)$	157.1 (4)	$\mathrm{C}(201)-\mathrm{P}(1)-\mathrm{Os}(1)$	119.3 (2)
$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(2)$	100.4 (4)	$\mathrm{C}(301)-\mathrm{P}(1)-\mathrm{Os}(1)$	$110 \cdot 0$ (3)
$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{Os}(1)$	85.7 (4)	$\mathrm{C}(201)-\mathrm{P}(1)-\mathrm{C}(101)$	$104 \cdot 6$ (3)
$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{Os}(2)$	85.0 (3)	C(301)-P(1)-C(101)	103.7 (3)
$\mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{Os}(1)$	96.8 (3)	$\mathrm{C}(301)-\mathrm{P}(1)-\mathrm{C}(201)$	$103 \cdot 6$ (3)
$\mathrm{C}(34)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$153 \cdot 5$ (3)	$\mathrm{C}(102)-\mathrm{C}(101)-\mathrm{P}(1)$	118.7 (2)
$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{Os}(1)$	176.7 (10)	C(106)-C(101)-P(1)	121.2 (2)
$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{Os}(1)$	178.8 (10)	C(202)-C(201)-P(1)	$120 \cdot 8$ (2)
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{Os}(2)$	177.9 (9)	C(206)-C(201)-P(1)	119.1 (2)
$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{Os}(2)$	178.3 (10)	C(302)-C(301)-P(1)	121.7 (2)
$\mathrm{O}(23)-\mathrm{C}(23)-\mathrm{Os}(2)$	$177 \cdot 1$ (10)	$\mathrm{C}(306)-\mathrm{C}(301)-\mathrm{P}(1)$	117.9 (2)
$\mathrm{O}(31)-\mathrm{C}(31)-\mathrm{Os}(3)$	178.0 (10)	$\mathrm{O}(34)-\mathrm{C}(34)-\mathrm{Os}(3)$	178.3 (11)
$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{Os}(3)$	$177 \cdot 6$ (13)	$\mathrm{O}(33)-\mathrm{C}(33)-\mathrm{Os}(3)$	177.4 (14)

Fig. 1. The molecular structure of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} . \mathrm{H}$ atoms have been omitted for clarity.

The short Os-Os bond appears to be unaffected by the presence of the phosphine group and its length is not significantly different from the $2.680(2) \AA$ in $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ (Orpen et al., 1978). Os(1)-Os(3) trans to the P atom is similar in length to the two unbridged bonds (mean $2.815 \AA$) in the parent dihydride but
$\mathrm{Os}(2)-\mathrm{Os}(3)$ is slightly longer. The $\mathrm{Os}-\mathrm{P}$ length is longer than the $2.285(5) \AA$ in $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ (Benfield, Johnson, Raithby \& Sheldrick, 1978). In the latter complex the introduction of the phosphite ligand also has little effect on individual Os - Os distances but causes an expansion of the twinned cuboctahedral ligand polyhedron and consequently the Os_{3} triangle. In $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ little expansion of the icosahedral ligand polyhedron is observed. In this case a small increase in size of the ligand polyhedron might cause the molecule to adopt the twinned-cuboctahedral geometry which would require energetically unfavourable ligand rearrangement.

The distribution of ligands is similar to that in $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ (Orpen et al., 1978) where both hydrides bridge the short Os-Os edge. The phosphine ligand appears to have little increase in steric influence over the carbonyl in this case, the $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$ and $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$ angles being equal. The fact that hydride ligands exert a steric influence has been illustrated by Orpen (1978). The Os-Os-C (carbonyl) angles (mean $130 \cdot 8^{\circ}$) involving $\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{C}(11)$, $C(12), C(22)$ and $C(23)$ show that the carbonyls bend away from the short $\mathrm{Os}(1)-\mathrm{Os}(2)$ edge. This indicates that in this molecule both hydrides also bridge the short edge and lie above and below the Os_{3} plane.

Although the light atoms were not located as accurately as in the neutron study (Orpen et al., 1978) the trends in $\mathrm{Os}-\mathrm{C}$ distances are the same. The $\mathrm{Os}-\mathrm{C}$ trans to the proposed hydride positions (mean $1.890 \AA$) are shorter than the equatorial $\mathrm{Os}-\mathrm{C}$ bonds (mean $1.923 \AA$) which are in turn shorter than the axial bonds associated with $\operatorname{Os}(3)$ (mean $1.934 \AA$). This may be explained in terms of competition for back donation of electron density from the Os atoms. The hydrides have
no empty orbitals of suitable energy to compete for back donation with the carbonyls trans to them so the Os-C bonds are short. When two carbonyls are trans to each other there is considerable competition so the Os-C bonds are individually longer. The two $\mathrm{Os}(1)-\mathrm{C}$ distances (mean $1.864 \AA$) are shorter than the two equivalent $\mathrm{Os}(2)-\mathrm{C}$ distances (mean $1.917 \AA$). This may be caused by the phosphine pushing electron density on to $\mathrm{Os}(1)$ which is taken up by stronger backbonding to the carbonyls. The phosphine is a better σ donor but a poorer π acceptor than the carbonyl ligand.

The carbonyls are all approximately linear with a mean $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angle of 177.8°; the average $\mathrm{C}-\mathrm{O}$ distance is $1.135 \AA$.

We thank the Science Research Council for financial support. Calculations were performed with the University of Cambridge IBM 370/165 computer and programs written by Dr G. M. Sheldrick; the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

References

Benfield, R. E., Johnson, B. F. G., Raithby, P. R. \& Sheldrick, G. M. (1978). Acta Cryst. B34, 666-667.
Bryan, E. G., Johnson, B. F. G. \& Lewis, J. (1977). J. Chem. Soc. Dalton Trans. pp. 1328-1330.
Churchill, M. R., Hollander, F. J. \& Hutchinson, J. P. (1977). Inorg. Chem. 16, 2697-2700.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Orpen, A. G. (1978). J. Organomet. Chem. 159, C1-C4.
Orpen, A. G., Rivera, A. V., Bryan, E. G., Pippard, D., Sheldrick, G. M. \& Rouse, K. D. (1978). J. Chem. Soc. Chem. Commun. pp. 723-724.
Zuccaro, C. (1979). In preparation.

Acta Cryst. (1979). B35, 2212-2214

Manganese(II) Malonate Dihydrate: a Reinvestigation

By T. Lis and J. Matuszewski

Institute of Chemistry, The University, 50-383 Wroclaw, Poland
(Received 28 April 1979; accepted 21 May 1979)

Abstract

C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}^{2-} . \mathrm{Mn}^{2+} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}\), orthorhombic, $P c a 2_{1}, a=9.62$ (1), $b=7.36$ (1), $c=$ 8.33 (1) $\AA, M_{r}=193.0, V=589.8 \AA^{3}, Z=4, D_{x}=$ $2.17 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} \mathrm{Ka}, \lambda=0.71069 \AA)=2.32$ mm^{-1}. Each Mn^{2+} ion is octahedrally coordinated by four carboxylate O atoms and two trans water O atoms. $\mathrm{Mn}-\mathrm{O}$ distances lie between $2 \cdot 127$ (3) and

2.232 (5) \AA. Four O atoms in the malonate ligand are involved in coordination to three different Mn^{2+} ions forming an extensive polymeric network parallel to (001). Each H atom from water molecules is involved in a hydrogen bond linking the layers along c. The structure was refined to an R of 0.032 for 760 diffractometer data.
© 1979 International Union of Crystallography

[^0]: * Lists of structure factors, hydrogen-atom coordinates, and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34484 (26 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

